CoinShop.us

★ Personal Service ★ Rare Coins ★ Gold ★ Silver ★ Crypto ★ Collectibles ★

Heralded entanglement distribution between two absorptive quantum memories

5 min read
https://www.nature.com/articles/s41586-021-03505-3?utm_source=feedburner&utm_medium=feed&utm_campaign=Feed%3A+nature%2Frss%2Fcurrent+%28Nature+-+Issue%29
  • 1.

    Yin, J. et al. Quantum teleportation and entanglement distribution over 100-kilometre free-space channels. Nature 488, 185–188 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 2.

    Briegel, H.-J., Dür, W., Cirac, J. I. & Zoller, P. Quantum repeaters: the role of imperfect local operations in quantum communication. Phys. Rev. Lett. 81, 5932–5935 (1998).

    ADS 
    CAS 

    Google Scholar
     

  • 3.

    Chou, C.-W. et al. Functional quantum nodes for entanglement distribution over scalable quantum networks. Science 316, 1316–1320 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 4.

    Yuan, Z.-S. et al. Experimental demonstration of a BDCZ quantum repeater node. Nature 454, 1098–1101 (2008).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 5.

    Yu, Y. et al. Entanglement of two quantum memories via fibres over dozens of kilometres. Nature 578, 240–245 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 6.

    Moehring, D. L. et al. Entanglement of single-atom quantum bits at a distance. Nature 449, 68–71 (2007).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 7.

    Hofmann, J. et al. Heralded entanglement between widely separated atoms. Science 337, 72–75 (2012).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 8.

    Hensen, B. et al. Loophole-free Bell inequality violation using electron spins separated by 1.3 kilometres. Nature 526, 682–686 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 9.

    Delteil, A. et al. Generation of heralded entanglement between distant hole spins. Nat. Phys. 12, 218–223 (2016).

    CAS 

    Google Scholar
     

  • 10.

    Gisin, N. & Thew, R. Quantum communication. Nat. Photon. 1, 165 (2007).

    ADS 
    CAS 

    Google Scholar
     

  • 11.

    Sangouard, N., Simon, C., de Riedmatten, H. & Gisin, N. Quantum repeaters based on atomic ensembles and linear optics. Rev. Mod. Phys. 83, 33–80 (2011).

    ADS 

    Google Scholar
     

  • 12.

    Yin, J. et al. Satellite-based entanglement distribution over 1200 kilometers. Science 356, 1140–1144 (2017).

    CAS 
    PubMed 

    Google Scholar
     

  • 13.

    Zhao, B., Chen, Z.-B., Chen, Y.-A., Schmiedmayer, J. & Pan, J.-W. Robust creation of entanglement between remote memory qubits. Phys. Rev. Lett. 98, 240502 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 14.

    Sinclair, N. et al. Spectral multiplexing for scalable quantum photonics using an atomic frequency comb quantum memory and feed-forward control. Phys. Rev. Lett. 113, 053603 (2014).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 15.

    Simon, C. et al. Quantum repeaters with photon pair sources and multimode memories. Phys. Rev. Lett. 98, 190503 (2007).

    ADS 
    PubMed 

    Google Scholar
     

  • 16.

    Gündoğan, M., Ledingham, P. M., Kutluer, K., Mazzera, M. & de Riedmatten, H. Solid state spin-wave quantum memory for time-bin qubits. Phys. Rev. Lett. 114, 230501 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 17.

    Zhong, M. et al. Optically addressable nuclear spins in a solid with a six-hour coherence time. Nature 517, 177–180 (2015).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 18.

    Saglamyurek, E. et al. A multiplexed light–matter interface for fibre-based quantum networks. Nat. Commun. 7, 11202 (2016).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 19.

    Zhou, Z.-Q., Lin, W.-B., Yang, M., Li, C.-F. & Guo, G.-C. Realization of reliable solid-state quantum memory for photonic polarization qubit. Phys. Rev. Lett. 108, 190505 (2012).

    ADS 
    PubMed 

    Google Scholar
     

  • 20.

    Zhong, T. et al. Nanophotonic rare-earth quantum memory with optically controlled retrieval. Science 357, 1392–1395 (2017).

    ADS 
    MathSciNet 
    CAS 
    PubMed 

    Google Scholar
     

  • 21.

    Tang, J.-S. et al. Storage of multiple single-photon pulses emitted from a quantum dot in a solid-state quantum memory. Nat. Commun. 6, 8652 (2015).

    ADS 
    CAS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 22.

    Zhou, Z.-Q. et al. Quantum storage of three-dimensional orbital-angular-momentum entanglement in a crystal. Phys. Rev. Lett. 115, 070502 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 23.

    Yang, T.-S. et al. Multiplexed storage and real-time manipulation based on a multiple degree-of-freedom quantum memory. Nat. Commun. 9, 3407 (2018).

    ADS 
    PubMed 
    PubMed Central 

    Google Scholar
     

  • 24.

    Afzelius, M., Simon, C., de Riedmatten, H. & Gisin, N. Multimode quantum memory based on atomic frequency combs. Phys. Rev. A 79, 052329 (2009).

    ADS 

    Google Scholar
     

  • 25.

    Gühne, O. & Tóth, G. Entanglement detection. Phys. Rep. 474, 1–75 (2009).

    ADS 
    MathSciNet 

    Google Scholar
     

  • 26.

    Dousse, A. et al. Ultrabright source of entangled photon pairs. Nature 466, 217–220 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 27.

    Liu, C. et al. On-demand quantum storage of photonic qubits in an on-chip waveguide. Phys. Rev. Lett. 125, 260504 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 28.

    Li, P.-Y. et al. Hyperfine structure and coherent dynamics of rare-earth spins explored with electron–nuclear double resonance at subkelvin temperatures. Phys. Rev. Appl. 13, 024080 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 29.

    Sabooni, M., Li, Q., Kröll, S. & Rippe, L. Efficient quantum memory using a weakly absorbing sample. Phys. Rev. Lett. 110, 133604 (2013).

    ADS 
    PubMed 

    Google Scholar
     

  • 30.

    Rančić, M., Hedges, M. P., Ahlefeldt, R. L. & Sellars, M. J. Coherence time of over a second in a telecom-compatible quantum memory storage material. Nat. Phys. 14, 50–54 (2018).


    Google Scholar
     

  • 31.

    Bao, X.-H. et al. Generation of narrow-band polarization-entangled photon pairs for atomic quantum memories. Phys. Rev. Lett. 101, 190501 (2008).

    ADS 
    PubMed 

    Google Scholar
     

  • 32.

    James, D. F. V., Kwiat, P. G., Munro, W. J. & White, A. G. Measurement of qubits. Phys. Rev. A 64, 052312 (2001).

    ADS 

    Google Scholar
     

  • 33.

    Browne, D. E. & Rudolph, T. Resource-efficient linear optical quantum computation. Phys. Rev. Lett. 95, 010501 (2005).

    ADS 
    PubMed 

    Google Scholar
     

  • 34.

    Pan, J.-W., Bouwmeester, D., Weinfurter, H. & Zeilinger, A. Experimental entanglement swapping: entangling photons that never interacted. Phys. Rev. Lett. 80, 3891–3894 (1998).

    ADS 
    MathSciNet 
    CAS 
    MATH 

    Google Scholar
     

  • 35.

    Xu, P. et al. Two-hierarchy entanglement swapping for a linear optical quantum repeater. Phys. Rev. Lett. 119, 170502 (2017).

    ADS 
    PubMed 

    Google Scholar
     

  • 36.

    Huber, D. et al. Strain-tunable GaAs quantum dot: a nearly dephasing-free source of entangled photon pairs on demand. Phys. Rev. Lett. 121, 033902 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 37.

    Wang, H. et al. On-demand semiconductor source of entangled photons which simultaneously has high fidelity, efficiency, and indistinguishability. Phys. Rev. Lett. 122, 113602 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 38.

    Liu, J. et al. A solid-state source of strongly entangled photon pairs with high brightness and indistinguishability. Nat. Nanotechnol. 14, 586–593 (2019).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 39.

    Liu, X., Zhou, Z.-Q., Hua, Y.-L., Li, C.-F. & Guo, G.-C. Semihierarchical quantum repeaters based on moderate lifetime quantum memories. Phys. Rev. A 95, 012319 (2017).

    ADS 

    Google Scholar
     

  • 40.

    Jin, J. et al. Entanglement swapping with quantum-memory-compatible photons. Phys. Rev. A 92, 012329 (2015).

    ADS 

    Google Scholar
     

  • 41.

    Clauser, J. F., Horne, M. A., Shimony, A. & Holt, R. A. Proposed experiment to test local hidden-variable theories. Phys. Rev. Lett. 23, 880–884 (1969).

    ADS 
    MATH 

    Google Scholar
     

  • 42.

    Clausen, C. et al. Quantum storage of photonic entanglement in a crystal. Nature 469, 508–511 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 43.

    Saglamyurek, E. et al. Broadband waveguide quantum memory for entangled photons. Nature 469, 512–515 (2011).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 44.

    Jobez, P. et al. Coherent spin control at the quantum level in an ensemble-based optical memory. Phys. Rev. Lett. 114, 230502 (2015).

    ADS 
    PubMed 

    Google Scholar
     

  • 45.

    Ortu, A. et al. Simultaneous coherence enhancement of optical and microwave transitions in solid-state electronic spins. Nat. Mater. 17, 671–675 (2018).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 46.

    Kindem, J. M. et al. Control and single-shot readout of an ion embedded in a nanophotonic cavity. Nature 580, 201–204 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 47.

    Rakonjac, J. V., Chen, Y.-H., Horvath, S. P. & Longdell, J. J. Long spin coherence times in the ground state and in an optically excited state of 167Er3+:Y2SiO5 at zero magnetic field. Phys. Rev. B 101, 184430 (2020).

    ADS 
    CAS 

    Google Scholar
     

  • 48.

    Businger, M. et al. Optical spin-wave storage in a solid-state hybridized electron–nuclear spin ensemble. Phys. Rev. Lett. 124, 053606 (2020).

    ADS 
    CAS 
    PubMed 

    Google Scholar
     

  • 49.

    Bussières, F. et al. Quantum teleportation from a telecom-wavelength photon to a solid-state quantum memory. Nat. Photon. 8, 775–778 (2014).

    ADS 

    Google Scholar
     

  • 50.

    Puigibert, M. G. et al. Entanglement and nonlocality between disparate solid-state quantum memories mediated by photons. Phys. Rev. Res. 2, 013039 (2020).

    CAS 

    Google Scholar
     

  • 51.

    Lvovsky, A. I., Sanders, B. C. & Tittel, W. Optical quantum memory. Nat. Photon. 3, 706–714 (2009).

    ADS 
    CAS 

    Google Scholar
     

  • 52.

    Hedges, M. P., Longdell, J. J., Li, Y. & Sellars, M. J. Efficient quantum memory for light. Nature 465, 1052–1056 (2010).

    ADS 
    CAS 
    PubMed 

    Google Scholar